First order rejection tests for multiple-objective optimization
نویسندگان
چکیده
Three rejection tests for multi-objective optimization problems based on first order optimality conditions are proposed. These tests can certify that a box does not contain any local minimizer, and thus it can be excluded from the search process. They generalize previously proposed rejection tests in several regards: Their scope include inequality and equality constrained smooth or nonsmooth multiple objective problems. Reported experiments show that they allow quite efficiently removing the cluster effect in mono-objective and multi-objective problems, which is one of the key issues in continuous global deterministic optimization.
منابع مشابه
Interactive multiple objective programming in optimization of the fully fuzzy quadratic programming problems
In this paper, a quadratic programming (FFQP) problem is considered in which all of the cost coefficients, constraints coefficients, and right hand side of the constraints are characterized by L-R fuzzy numbers. Through this paper, the concept of α- level of fuzzy numbers for the objective function, and the order relations on the fuzzy numbers for the constraints are considered. To optimize th...
متن کاملThermal-Economic Optimization of Shell and Tube Heat Exchanger by using a new Multi-Objective optimization method
Many studies are performed by researchers about Shell and Tube Heat Exchanger but the Multi-Objective Big Bang-Big Crunch algorithm (MOBBA) technique has never been used in such studies. This paper presents application of Thermal-Economic Multi-Objective Optimization of Shell and Tube Heat Exchanger Using MOBBA. For optimal design of a shell and tube heat exchanger, it was first thermally model...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 58 شماره
صفحات -
تاریخ انتشار 2014